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1. Radiation Heat Transfer





Numerical Technique (page 34)





The radiation and convection was formulated is terms of two first-order nonlinear ordinary differential equations. The problem is termed an initial-value problem. In general, to formulate higher-order differential equations of the form 





� EMBED Equation.3  ���						(1-77)





in terms of an initial-value problem, one must not only know y at x=0, but also � EMBED Equation.3  ��� at x=0.





The numerical technique used to obtain solutions to ordinary differential equations is the fourth-order Runge-Kutta integration scheme. 








2. One-Dimensional Conduction 


   


2.1 Numerical Technique (page 66)





The two first-order equations of nondimensional temperature field can be solved by means of the fourth-order Runge-Kutta technique. The fourth-order Runge-Kutta technique was used and the Newton-Raphson iteration technique was applied to obtain the correct value of the dimensional dependent variable derivatives at zero value of nondimensional independent variable.  





3. Two-Dimensional Conduction 


   


3.1 Numerical Technique (page 119)


The finite difference analysis begins with the definition of a model. However, the region to be analyzed is now pictured as being made up of small, but finite, volume elements. The difference in the resulting equations for the finite difference analysis as compared to the differential analysis due to this important distinction in the definition of the model. The finite element used to obtain the mathematical model is an approximation of a differential element. As the size of the finite elements decreases, the difference between the results produced by a finite difference model and a differential model decreases. 


The size of the error introduced by using a finite difference approximation to specify the temperature field depends on the size of the finite volume elements. Taylor series expansion can be used to determine the error introduced by the finite difference approximation. As the size of the volume elements is decreased, the accuracy of the computations increases, but so does the required computer time. A compromise on element size must be made based upon the accuracy required and the cost of computation. In some problems it may be useful to choose one size of grid network for one region and another smaller size for regions high temperature gradients. It may also be desired to use grid networks made up of shapes other than squares or rectangles in order to match the shape of a boundary.            








4. Transient Conduction 


   


4.1 Numerical Technique (page 189)


The numerical analysis for transient, one-dimensional heat conduction can be performed by using the finite difference technique where many methods have been suggested which are combinations of the implicit and explicit methods. To obtain the finite difference solution to the governing partial differential equation, a grid network is needed to form the nodal points which represent the solid region and its boundary. 








5. Laminar Convection 


   


5.1 Numerical Technique (page 248)

















OVERVIEW OF BASIC NUMERICAL METHODS





introduction


The design process that was standard a number of years ago in the field of heat transfer employed both experimental and analytical methods. Analytical methods were largely pencil-and-paper procedures that attempted to provide solutions to problems through the use of simplifying assumptions. The simplifying assumptions were necessary to make the problems tractable, but they severely limited the applicability of the results. The availability of the digital computer has stimulated the rapid growth of another approach to solving complex problems in heat transfer that has become known as the “numerical” or “computational” approach.


	In the numerical approach, a fairly complete mathematical description of heat transfer phenomena is retained and the governing equations are solved numerically. If the governing equations are sufficiently complete, the process might be considered a “computer simulation” of the physical process.


	Some of the ideas used in the numerical approach are very old. Numerical analysis existed as a branch of applied mathematics long before the invention of the electronic digital computer in the 1930s. However, the use of numerical methods in engineering was rather limited until the electronic digital computer became widely available. As the use of computers became widespread, new algorithms and concepts were developed, and others were modified to take advantage of the new technology. Thus, not all the ideas used in numerical methods are old. Some are as new as the most recent issues of the numerous scientific journals that specialize in computational methods. 


	A number of very powerful numerical procedures for the solution of complex problems in heat transfer are presented in subsequent sections. Many of these procedures make use of common components or “building block” algorithms. For example, methods for solving large systems of linear algebraic equations are utilized in several of the procedures. Simple ideas like interpolation, curve fitting, and root finding are also used in support of many of the solution procedures. The present purpose is to provide an introduction to many of the basic concepts and algorithms that can be employed in formulating or supporting the procedures described throughout the volume. Support includes the preparation of input and interpretation of the results arrived at in the solutions to complex problems. 


	Only the topics most relevant to computational methods for fluid flow and heat transfer will be covered, and within each topic, only those methods that are helpful in illustrating the main concepts or are among the most useful for a class of problems will be presented. 





FINDING ROOTS OF EQUATIONS


General


Very frequently in the solution of engineering problems it becomes necessary to find the value of a variable (x, for example) that satisfies a nonlinear or transcendental equation of a form that precludes isolated the unknown on the left-hand side. This gives rise to what is often called a “trial-and-error problem.” Examples include 





� EMBED Equation.3  ���								(1.1)


� EMBED Equation.3  ���								(1.2)


� EMBED Equation.3  ���							(1.3)





	The problem, of course, is to find the value or values (roots) of x that satisfy these equations. While blind trial and error might work, three systematic, programmable procedures will be considered here. These are:


Method of iteration (successive approximation)


Newton-Rapson (Newton’s) method.


Secant method and variations


	


	Depending on the problem, the roots may be real or complex and may be finite or infinite in number. Examples in the next sections treat only equations having a finite number of real roots. 





Method of Iteration


The iterative method (also known as the method of successive approximation) is probably the simplified scheme to formulate. The equation is first arranged in the form


� EMBED Equation.3  ���				(1.4)


That is, the equation is rearranged to isolate one appearance of x on the left-hand side even though x may appear in various forms on the right-hand side. In general, more than one rearrangement can be found to achieve this. Equation (1.1) will be used as an example. Applying this first step to Eq. (1.1) and choosing the most obvious arrangement to isolate x gives


� EMBED Equation.3  ���									(1.5)


A guess for the value of x initially allows the right-hand side, f(x), to be evaluated. This value is then used to obtain a second value of x according to the algorithm





� EMBED Equation.3  ���								(1.6)


The repeated (iterative) application of Eq. (1.6) will either converge to a root of the equation or diverge. Convergence is observed when the change in the value of x between successive applications of Eq. (1.6) becomes smaller and smaller and can be reduced to any arbitrarily prescribed value, 


� EMBED Equation.3  ���								(1.7)


The iterative procedure can be interpreted graphically by plotting both sides of Eq. (1.4) as functions of x.. The intersection then represents the root of the equation. This is illustrated in Fig. 1.1. In this example, the iterative sequence shown starting to the right is divergent, whereas the sequence shown starting with an initial guess between the two roots is convergent to the root on the left. A sufficient condition for the convergence of the iterative procedure can be stated as follwos:


If � EMBED Equation.3  ���and � EMBED Equation.3  ���are continuos on an interval about a root of � EMBED Equation.3  ���and if � EMBED Equation.3  ���for all x in the interval, then � EMBED Equation.3  ���will converge to a root provided the initial guess is in the interval. 





	The main advantage of the iterative procedure is the simplicity of the algorithm. The most annoying disadvantage is that different arrangement must frequently be considered in order to identify the form that will lead to convergence. Furthermore, when multiple roots to an equation exist,  a different arrangement is typically required for each root. 





Newton-Raphson Method 


The Newton-Raphson method (also known simply as Newton’s method) is one of the most widely used root-finding procedure. In this method the equation is first written in the form 


� EMBED Equation.3  ���					(1.13)


The Newton-Raphson method can be derived formally through the use of a Taylor series expansion. The main idea can also be motivated geometrically. A typical � EMBED Equation.3  ���is shown in Fig. 1.2. The root is the value of x at which � EMBED Equation.3  ���across the x axis. If the initial guess for the root is � EMBED Equation.3  ���, a tangent can be 


extended from the point � EMBED Equation.3  ��� The point at which the tangent crosses the x axis is intended to represent an improved estimate of the root, � EMBED Equation.3  ���. 


As can be seen from Fig. 1.2, the first derivative (slope of the tangent) at � EMBED Equation.3  ���can be written as 


� EMBED Equation.3  ���							(1.14)


Solving Eq. (1.14) for � EMBED Equation.3  ���gives the Newton-Raphson formula,


� EMBED Equation.3  ���							(1.15)





A sufficient condition for convergence can be developed by making use of the convergence criterion noted for the method of successive  approximation. The right-hand side of the Newton-Raphson formula can be considered the � EMBED Equation.3  ���in the simple iterative algorithm, Eq. (1.6). That is,





� EMBED Equation.3  ���						(1.17)





From the sufficient condition for the convergence of the iterative method described in section 1.2.1, it follows that the algorithm of Eq. (1.17) will converge if � EMBED Equation.3  ��� or 


� EMBED Equation.3  ���						(1.18)


The convergence of the Newton-Raphson procedure can be shown to be “quadratic.” That is, the error at the (n+1)th iteration is proportional to the error at the nth iteration squared. 


	In general, the Newton-Raphson method is very efficient and is to be preferred over the method of successive approximation because its convergence rate is more favorable and because the problem of finding a convergent arrangement of the equation is avoided. 





Secant Method


Of the simple root-finding methods, the Newton-Raphson method is fairly efficient, and its use is strongly recommended. There are situations, however, when it is difficult or impossible to apply it because the first derivative is required. In some instances the function having a root is not known in an analytical form. It may, in fact, be a numerical solution. 


	When it is not feasible to evaluate � EMBED Equation.3  ���analytically, it is possible to 


replace � EMBED Equation.3  ���in the Newton-Raphson formula by a finite-difference 


representation of the derivative. That is, it is possible to write Eq. (1.15) as


� EMBED Equation.3  ���							(1.21)


where K is an approximation to � EMBED Equation.3  ���given by


� EMBED Equation.3  ���							(1.22)





Such a procedure is illustrated in Fig. 1.4. The line through the two points � EMBED Equation.3  ���and � EMBED Equation.3  ���is sometimes referred to as a secant line, and the procedure obtained by substituting Eq. (1.22) into Eq. (1.21) is shown as the secant method. The algorithm can be written as 


� EMBED Equation.3  ���						(1.23)





The method is also occasionally called the method of linear extrapolation, since Eq. (1.23) can also be derived by linearly extrapolating the straight line through � EMBED Equation.3  ���and � EMBED Equation.3  ���to find the value of x at which the line crosses the x axis. Equation (1.23) can also be identified as an interpolation 


formula when � EMBED Equation.3  ���and � EMBED Equation.3  ���have opposite signs. Two initial guesses, 


� EMBED Equation.3  ���and � EMBED Equation.3  ���, must be supplied in this procedure. 





Solving Sets of Equations 


General 





The previous section dealt with the problem of finding the value of x that satisfied a single equation, � EMBED Equation.3  ���. In the present section, the problem of determining the values, � EMBED Equation.3  ��� that simultaneously satisfy a set of equations 


� EMBED Equation.3  ���


� EMBED Equation.3  ���








� EMBED Equation.3  ���


is considered. Such a system may be linear or nonlinear. However, the main emphasis will be on methods for linear algebraic equations. The nonlinear case will be considered only briefly. 


	The need to solve large systems of simultaneous linear algebraic equations arises very frequently in connection with a wide variety of problem, including the numerical solution of partial differential equations by finite-difference and finite-element methods. Methods for solving systems of linear algebraic equations can be classified as either direct or iterative. Direct methods are those that provide the solution in a finite and predeterminable number of operations using an algorithm that is often relatively completed. Iterative methods consist of repeated application of an algorithm that is usually relatively simple. They yield an answer only as a limit of a sequence. The number of iterative required to obtain solutions that no longer change to a specified number of decimal places usually cannot be determined in advance. Methods of both types will be introduced in this section. 


	A fairly large fraction of scientific computing involves the solution of systems of linear algebraic equations. It is not surprising, then, that the literature on the subject is quite extensive. The motivation to develop improved methods is great. This introductory sections present a few proven methods that demonstrate fundamental concepts; references are cited in which interested readers can find discussions of more advanced method. 





Direct Methods


Gaussian Elimination. Gaussian elimination is a very useful and efficient tool for solving many systems of algebraic equations. Although it is one of the earlier methods proposed for solving simultaneous linear equations, it remains among the most important algorithms in use today. 


	A system of simultaneous linear algebraic equations can be written in the general from: 


� EMBED Equation.3  ���


� EMBED Equation.3  ���						(1.24)


� EMBED Equation.3  ���





The same system of equations can be represented in matrix-vector notation as 


� EMBED Equation.3  ���										(1.25)


The solution vector remains unchanged if equations are multiplied or divided by a constant and if any equation is replaced by the sum or difference of that equation and any other equation. These facts are utilized in the elimination strategy. 


	In Gaussian elimination, the-objective is to transform the system into an upper-triangular array by eliminating unknowns through algebraic operations. All the nonzero coefficients will then be on or above the main diagonal. At that point, the nth equation contains only one unknown; the (n-1)th equation, only two unknowns; etc.. Back-substitution; starting with the nth equation, readily provides the solution. The technique consists of two phases: the elimination of unknowns and back-substitution to obtain the solution. Loss of accuracy can occur in the algorithm due to roundoff errors. The use of “partial pivoting” to avoid division by zero and to improve accuracy will be included as part of the algorithm. If the elements of the coefficient matrix vary greatly in size, it is likely that accuracy can be further improved by the use of scaling. 


	The use of partial pivoting prevents division by zero in the elimination setp, if it is possible to avoid it. When row interchange cannot prevent division by zero, then the determinant of the coefficient matrix is zero and no unique solution exists. For some systems of equations, roundoff errors tend to accumulate in the Gaussian elimination procedure, causing significant errors in the solution vector. Partial pivoting helps to minimize roundoff errors. Using more significant figures in the computation also helps to minimize roundoff errors1.   





Elimination Method for Tridiagonal Matrices


Gaussian elimination is a general procedure that, in principle, will provide a solution, if one exists, for any system of linear algebraic equations. For systems whose coefficient matrix contains a specific pattern of zeros, the elimination scheme can be simplified to avoid pointless operations on the zero elements. Such specialized systems of algebraic equations occur very frequently in the numerical solution of partial differential equations. The most common of these systems are tridiagonal and pentadiagonal, corresponding to equations that contain three and five unknowns, respectively. The tridiagonal matrix is by far the most commonly used of these and will be discussed in some detail here. The standard tridiagonal form is given by























where the only nonzero coefficient are the three on and on either side of the main diagonal. The first and last equations contain only two nonzero coefficients. For this system it is easy to modify the Gaussian elimination procedure to take advantage of the zeros in the matrix of coefficients. This modified procedure, suggested by Thomas,3 . 





	Many interesting physical problems are governed by coupled systems of partial differential equations. The equations governing convective heat transfer are of this type when certain popular numerical schemes are applied to these equations, a “block” tridiagonal system of algebraic equations often arises. A block system is likely to develop when more than one dependent variable is treated as an unknown in the finite-difference representation of a partial differential equation and more than one partial differential equation is to be solved simultaneously. General algorithms for the solution of block tridiagonal systems follow the same procedural steps as the scalar tridiagonal algorithm: upper triangularizations and and back-substitution. Sine the blocks from a triadiagonal pattern, their solution requires considerably less effort than that of a more general coupled system of equations. However, computational effort does increase approximately in proportion to the square of the block size. The term “block size” refers to the order of the square matrices that form the tridiagonal pattern. This order (block size) is the number of simultaneous unknown to be determined at each internal grid point by solving the coupled system. 





Other Direct Methods


	Direct methods for solving certain systems of algebraic equations that are significantly faster than Gaussian elimination do exist. Unfortunately, none of them is completely general. That is, they are applicable only to the algebraic equations arising from a special class of difference equations and associated boundary conditions. As a class, the algorithms for fast direct procedure tend to be rather complicated and are not easily adapted to irregular problem domains or complex boundary conditions. 


	One of the simplest of the fast direct methods if the error vector propagation (EVP) method developed by Roache3 for solving the algebraic systems associated with numerical solutions of the Laplace and Poisson equations. Roundoff errors tend to accumulate in this method, so it is limited in applicability to relatively small systems of equations. The concepts are straightforward, and in test cases where it was possible to control the growth of roundoff errors, the method was found to be 10-100 times faster than the best iterative methods. 


	The fast direct methods for the Poisson and Laplace equations that are not limited by the accumulation of roundoff errors are the even-odd reduction method of Buneman6 and the fast Fourier transform method of Hockney7,8. 





Iterative Methods


Whereas in principle Gaussian elimination will provide a solution to a system of simultaneous linear algebraic equations if one exists, it is not always the best method to use. Unless a very large system of equations is well-conditioned, conventional elimination methods may prove inadequate because of the effects of roundoff errors. Iterative methods are particularly useful for systems in which roundoff errors may be a problem in that such schemes, when convergent, can be continued until changes in the solution have been reduced to some prescribed tolerance. Furthemore, iterative procedures can easily take advantage of the sparse nature of the coefficient matrices that are associated with many physical problems. (A matrix is spare when a high percentage of the entries are zero). On the other hand, iterative procedures are certain to converge only for systems having “diagonal dominance”. The nature of this dominance will be described in the material to follow. Fortunately, many sets of linear algebraic equations originating from physical systems exhibit this diagonal dominance. 


	Iterative methods can be further broken down into point (or explicit) iterative methods and block (or implicit) iterative methods. For point iterative methods, the same simple explicit algorithm is applied iteratively to compute the unknown functions, whereas in block iterative methods, subgroups of unknowns are singled out for solution by elimination (direct) schemes in an overall iterative procedure. The most common applications of the block iterative methods are special classes of equations arising from the numerical solution of elliptic partial differential equations. 





Gauss-Seidel Iterative


The Gauss-Seidel procedure is perhaps the simplest of the commonly used iterative methods. When it can be used, the procedure for a general system of equations is (1) make initial guesses for all unknowns; (2) solve each equation for the unknown whose coefficient is largest in magnitude, using guessed values initially and the most recently computed values thereafter for the other-unknowns in each equation; (3) repeat the solution of the equations in this manner until changes in the unknowns become smaller than a prescribed tolerance. 


	Actually, a careful check on step 1 will reveal that a guess for the unknown having the largest coefficient in the first equation is not required. It should also, be noted that in carrying out step 2, it is necessary to determine a different unknown from each equation. In most instances, when the Gauss-Seidel procedure convergence, a different unknown will be found to have the coefficient largest in magnitude in each equation. When this does not occur, step 2 should be modified to permit all the unknowns to be determined from the system of equations. 


	A more formal statement of the algorithm can be given if the equations are first ordered, if possible, so that the coefficient largest in magnitude in each row is on the main diagonal. Then, if the diagonal elements are all nonzero (it must be possible to avoid a zero on the main diagonal if a unique solution exists), and initial guesses for the unknowns have been made,


 


� EMBED Equation.3  ���				(1.36)





where it is understood that the most recently computed values of x are used on the right-hand side; that is, the variables are continuously updated. When old values of x are used on the right-hand side until all n variables have been recomputed, the iterative procedure is known as Jacobi iteration. In the Jacobi procedure, the variables are finally updated before the algorithm is repeated for another iteration. The Gauss-Seidel procedure convergence more rapidly and should always be used. Unless otherwise indicated, use of a conventional (sequential) computer will be assumed as algorithms are presented and points of comparison made. 


	Assuming again that the equations have been ordered, if possible, so that the coefficient largest in magnitude in each row is on the main diagonal, a sufficient condition for convergence of the Gauss-Seidel iterative procedure (and Jacobi iteration also) is 


� EMBED Equation.3  ���	for � EMBED Equation.3  ���						(1.37)


and





� EMBED Equation.3  ���	for at least one � EMBED Equation.3  ���						(1.38)		


Since this is a sufficient rather than a necessary condition, convergence may sometimes be observed even when it is not met. Systems for which Eqs. (1.37) and (1.38) hold are said to be diagonally dominant.





Successive Overrelaxation


The convergence rate of the Gauss-Seidel iterative procedure can often be improved by applying “acceleration” procedures. The simplest of these is known as successive overrelaxation (SOR). The main idea in this procedure is to use the change observed in the unknowns between two iterations as a guide to the change to be expected with the next iteration. Then the variables are arbitrarily adjusted in the direction of the anticipated change before the next iteration. Since the iterative procedure presumably converges, the change expected with the next iteration should be only a fraction of the change observed for the last iteration. 


	The overrelaxation procedure can be put into practice with the following modification to the algorithm of Eq. (1.36):





� EMBED Equation.3  ���					(1.39)





� EMBED Equation.3  ���					(1.40)





where � EMBED Equation.3  ���is a provisional value of the unknown as determined from the standard Gauss-Seidel algorithm, � EMBED Equation.3  ���denotes iteration level, and� EMBED Equation.3  ��� is the overrelaxation parameter. It should be noted that for each value of � EMBED Equation.3  ���, the provisional value � EMBED Equation.3  ���is immediately replaced by the overrelaxation value as indicated by Eq. (1.40). In fact, Eqs. (1.39) and (1.40) can be combined by replacing the value of � EMBED Equation.3  ���in Eq. (1.40) by the right-hand side of Eq. (1.39) to give





� EMBED Equation.3  ���			(1.41)


It should be noted that the right-hand sides of Eqs. (1.36) and (1.39) are equivalent. For Eq. (1.36) it is understood that the most recently computed values of � EMBED Equation.3  ��� are used on the right-hand side. When iteration levels are to be distinguished by a superscript, as in Eq. (1.39), it is necessary to split the summation of Eq. (1.36) into two parts. 


	The values of � EMBED Equation.3  ��� in the range 1(� EMBED Equation.3  ���(2 correspond to overrelaxation, as described above. That is, the values of � EMBED Equation.3  ���are being adjusted in the direction indicated by the most recent changes. When 0(� EMBED Equation.3  ���(1, the adjustment takes the form of a weighted average of the value from the most recent application of the standard Gauss-Seidel algorithm and the previous value. In this case, the change indicated by the standard formula is deemed too much, and an adjustment toward the previous value is made. Underrelaxation is somtimes needed to achieve convergence of the equations arising from complex and nonlinear problems. 


	The relaxation parameter should be restricted to the range 0(� EMBED Equation.3  ���(2. Use of � EMBED Equation.3  ���forces the changes from one iteration to the next remain the same or increase, in contraction to convergent behaviour. 


	Unfortunately, it is not easy to determine the optimum value of � EMBED Equation.3  ��� for a given problem. It is usually determined by trial and error by noting the effect of � EMBED Equation.3  ��� on the rate of convergence. There are exceptions to this, however. For the system of equations that results from solving Laplace’s equation by means of a standard finite-difference procedure in a rectangle with fixed-value (Dirichlet) boundary conditions, a theory has been developed that allows calculation of the optimum � EMBED Equation.3  ��� in a simple and direct 


manner4. For many problems, the effect of applying overrelaxation can be dramatic. The use of the optimum overrelaxation factor can often reduce the number of iterations required for convergence by a factor 8-10. 





Matrix Inversion


	The method so far in this section have addressed the problem of determining the solution to a system of simultaneous linear algebraic equations. In terms of matrix-vector notation, they have provided a means for evaluating the vector x in � EMBED Equation.3  ���. Sometimes the problem of solving the linear algebraic system is loosely (and incorrectly) referred to as matrix inversion. Strictly speaking, matrix inversion means, given a square matrix � EMBED Equation.3  ��� with a nonzero determinant, finding a second matrix� EMBED Equation.3  ��� having the 


property that � EMBED Equation.3  ���, where � EMBED Equation.3  ��� is the identity matrix. The identity matrix is a matrix having 1’s on the main diagonal and 0’s everywhere else.


	There are several important applications where it is necessary to determine the elements of � EMBED Equation.3  ���, such as in certain statistical calculations or in matrix-updating procedures for solving systems of nonlinear equations1. If the inverse of a matrix is known, it can also be used in solving systems of equations of the form 





� EMBED Equation.3  ���					(1.42)


where only the right-hand side vector c will vary from system to system. Multiplying both sides of Eq. (1.42) by � EMBED Equation.3  ��� gives


� EMBED Equation.3  ���					(1.43)





Techniques for Nonlinear Equations


Many physical problems are nonlinear, and these often lead to algebraic systems of equations that are nonlinear. Since the numerical methods available for solving linear equations are very efficient, every effort is usually made to linearize the nonlinear algebraic equations through the use of physically based approximations so that algorithm for solving simultaneous linear equations can be applied. In this section, two methods for finding the solution to systems of simultaneous nonlinear equations will be discussed. Both procedures are extensions of a method employed in section 1.2 to find roots of a single equation and are of an iterative nature. 





Method of Iteration (Successive Approximation)


Consider the following pair of nonlinear equations:





� EMBED Equation.3  ���	and � EMBED Equation.3  ���			(1.44)





The objective is to find values of x and y that will satisfy both equations. The iterative method of Section 1.2 can be extended to treat this problem by rearranging the equations so that each can be solved for a different unknown.


� EMBED Equation.3  ���	and � EMBED Equation.3  ���						(1.45)


Initial guesses are made for the values of x and y appearing on the right-hand side of the equations and the unknowns are iteratively recomputed as indicated by Eq. (1.45). The most recently computed values are then used  on the right-hand side. A sufficient condition for convergence of this procedure applied to Eq. (1.45) is





� EMBED Equation.3  ���(1		� EMBED Equation.3  ���(1							(1.46)





As the number of equations increases, it becomes increasingly difficult to quickly recognize the arrangement of the equations that will allow convergence of the iterative procedure.





Newton-Raphson Method


The Newton-Raphson (or Newton’s) procedure for finding the root of an equation can also be extended to deal with systems of nonlinear equations. The example system of two nonlinear equations given by Eq. (1.44) will again be used to illustrate the method. The equations have the form 





� EMBED Equation.3  ���	and � EMBED Equation.3  ���





The procedure can be generalized to n nonlinear equations with n unknowns as follows. The unknowns are designated as � EMBED Equation.3  ���. The functions 


are denoted by � EMBED Equation.3  ���, and the equations are written in the form 


� EMBED Equation.3  ���for � EMBED Equation.3  ��� 


The system of equations can be solved by Gaussian elimination or any appropriate solution procedure for systems of linear algebraic equations. The unknowns are incremented, the functions and derivatives are updated, and the system is solved again for the new increments in the unknowns. The process is continued until convergence is achieved. Each iterative update of the unknowns requires a solution of the system of algebraic equations. As for the Newton method applied to a single equation, a convergence criterion for the system can be developed by making use of the convergence for the method of successive approximation. Convergence generally requires that the initial guess be sufficiently close to the solution vector, a condition that is usually established by trial and error. 





Introduction To Concept Of Interpolation And Curve Fitting





1.4.1 General


		


	In this section the concepts of interpolation and curve fitting are introduced for functions of a single variable. Very often, when dealing with numerical data the need arises to deduce reasonable values for a quantity that depends on some independent variable x at x’s intermediate between the given values. This is the problem of interpolation. It occurs routinely in using the results of a numerical solution because the numerical results are known only at discrete points and information is needed intermediate to the discrete points. In setting up the input to a numerical calculation, it is also often necessary to interpolate in order to deduce information at locations required by the computer code.


	In some situations it is highly desirable to find a functional relationship between two variables x and y that “reasonably” satisfies a set of given points and provides a basis for inferring values of y at values of x between the given points. This is the problem of curve fitting. In curve fitting, a functional form is determined to reasonably represent the given data, whereas in interpolation the only requirement is a means to deduce values between the given ones. Once the curve fit is established, it can also be used for interpolation.





Use of  Polynomials in Curve Fitting and Interpolation


It is always possible to fit a polynomial of degree n through n+1 points. Furthermore, there is one and only one polynomial of degree n or less that passes exactly through n+1 points. The general form of an nth-degree polynomial is 





� EMBED Equation.3  ���						(1.51)





The coefficients for a polynomial of degree n+1 or less that passes exactly through n points are determined by writing the equation specifically for each point and then solving the system of n equations for the n coefficients.


It is frequently inconvenient to determine the required polynomial by solving a system of linear algebraic equations for the unknown coefficients. When the number of equations becomes large, the coefficient matrix frequently becomes ill-conditioned, causing the solution by conventional elimination algorithms to be inaccurate. For this reason, the use of the Lagrangian form1 of a polynomial is often convenient. 





Curve Fitting by Least Squares


Although it is possible to determine a polynomial that will pass exactly through a set of given data points, such a curve may have undesirable features if the data exhibit a degree of “scatter” or “noise”. As mentioned previously, a high-degree polynomial will often oscillate badly between points and therefore be a poor representation of the general trend indicated by the data. The least squares procedure provides a helpful methodology for determining a curve that will represent the general trend of the data without passing through all the points.


	In the least squares procedure, an assumption must first be made about the functional form of the curve, � EMBED Equation.3  ���. This is often suggested by the general appearance of the plotted data or by insight into the physical processes associated with the data. Common examples of functional forms are linear, � EMBED Equation.3  ���; quadratic, � EMBED Equation.3  ���; and exponential, � EMBED Equation.3  ���or � EMBED Equation.3  ���. In the simplest least squares approach, it is assumed that all errors are associated with the determination of the y values. The x’s are assumed to be known exactly. The constants (a, b, and c in these examples) in the functional form specified are then determined in such a way that the sum of the squares of the errors (the deviations between the y’s and the y(xi)’s from the function) are a minimum. 























In some applications, it may be highly desirable to fit the data by a function other than a polynomial. There are many examples of this in heat transfer applications where the Nusselt number often varies with the Reynolds number to a power, according to the general form
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The normal equations for this form can be developed by following the concepts illustrated for polynomials, but in this case the normal equations are nonlinear in a and b. Thus, iterative solution procedures are usually required for the general case, and it is difficult to construct  a general-purpose computer code to handle a wide variety of functions each of which results in nonlinear normal equations. An alternative is to work within the framework of a polynomial fitting procedure by linearizing the expression before fitting by taking the logarithms of both sides:
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The data can be input to the least squares fitting  procedure (linear or polynomial) as


�EMBED Equation.3���	and �EMBED Equation.3���


Out of the procedure would come the optimum values of b and log a, In this situation it is not the sum of the squares of the deviations of �EMBED Equation.3���from the curve that is minimized but rather the deviations of  �EMBED Equation.3���. The effect, this amounts to minimizing the  squares of the percentage errors.





1.5 Numerical Integration 





1.5.1 General


The concepts involved in numerical integration (or quadrature) are relatively simple. Virtually every conceivable experimental or computational attack on a problem will put the investigator in the position of having data in a tabular form (such as velocities or temperatures) and wanting to compute parameters that depend on integrals containing the data (such as mass flow rate or energy flux). Numerical integration provides a means of approximating integrals of functions that are known only at discrete points, i.e., the function is  given as a table of points �EMBED Equation.3���. Numerical integration can also be used to approximate the integral of a continuous function that cannot be easily integrated analytically. In  ýýýthis case  the integrand is computed at discrete points and theý procedure is the same as for integrating with a table of points. The numerical procedure used to integrate is equivalent to making some assumption about the curve procedures-the trapezoidal rule and Simpson’s rule. 


1.5.2 Trapezoidal Rule 


It is assumed that �EMBED Equation.3���is known as a tabular function, �EMBED Equation.3���for n+1 values of �EMBED Equation.3���, and it is desired to evaluate �EMBED Equation.3���. With n+1 points, the interval from a to b contains n subintervals. In the trapezoidal rule, the points are connected by a straight line and the area under the curve in each subinterval is approximated by the area of the resulting trapezoid as indicated in Fig. 1.6. For one subinterval, the area of the trapezoid is the average height times the width and





�EMBED Equation.3���						(1.72)


For the entire interval from a to b, 
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where the notation �EMBED Equation.3���has been adopted. It should be noted that the intervals �EMBED Equation.3��� need not be equal for the trapezoidal rule. 





1.5.3 Simpson’s Rule�EMBED Equation.3���


The trapezoidal rule approximates the area under a curve by summing the areas of trapezoids formed by connecting successive points by straight lines. A more accurate estimate of the area can be achieved by using polynomials of higher degree to connect the points. One of the most widely used integration algorithms is Simpson’s 1/3 rule in which a second-degree polynomial is fit to groups of three adjacent point to approximate the area. In the conventional version of Simpson’s 1/3  rule, the points are required to be equally spaced. It is easy to show2 by polynomial fitting or application of a second-degree Lagrange polynomial that the following formula results.
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The composite formula for n equally spaced intervals takes the form





�EMBED Equation.3���		(1.79)





It should be noted that a single application of Simpson’s 1/3 rule  requires three points and two �EMBED Equation.3��� increments. It follows that an even number of intervals (odd number of points) is required for multiple applications of Simpson’s 1/3 rule. 


It is interesting to note that the truncation error for the 3/8 rule is the same order as for the 1/3 rule. That is, by using a cubic polynomial through four points instead of a parabola through three points, no gain in accuracy is achieved. In fact, the coefficient in the truncation error is even larger in the 3/8 rule. In light  of this, the main suggested use for the 3/8 rule is to deal with the situation when the tabulated data to be integrated contain an odd number of intervals. The suggested procedure is to apply the 1/3 rule as far as possible and then complete the integration by applying the 3/8 rule to three �EMBED Equation.3���intervals. 


It is at first surprising to note that the 1/3 and 3/8 rules have comparable truncation errors. The reason for this is that, due to fortunate cancellation, the 1/3 rule for constant �EMBED Equation.3���becomes exactly correct for a cubic function as well as for a parabola This is illustrated qualitatively in Fig. 1.7.





1.5.4 Extension of Simpson’s Rule�EMBED Equation.3���to Unequally Spaced Points


It should be evident that a second-degree polynomial can be fit to three unequally spaced points. The polynomial thus determined can then be integrated. The integration formula developed in this manner will be called Simpson’s rule for unequal increments. The formula can be derived in a variety of ways, but one of the most convenient is to employ a procedure known as exact matching.12 Integration through fitting a second-degree polynomial to three points should be exact for function that are constants, straight lines, or second-degree polynomials. The three unequally spaced points are shown in Fig. 1.8. In developing the formula, the origin (x=0) will be taken at the middle point. This choice is arbitrary. The value of the integral is not influenced  by a translation of the origin of the coordinate system in the x direction. It is required that 
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when is a constant, a straight line, or a second-degree polynomial. The parameters �EMBED Equation.3��� are weighting factors that can be determined by requiring Eq. (1.85) to hold for �EMBED Equation.3���equal to polynomials up through the second degree. The functions �EMBED Equation.3��� �EMBED Equation.3���and �EMBED Equation.3���will be used to establish �EMBED Equation.3���and �EMBED Equation.3���. Any second-degree polynomial can be formed by a linear combination of these three functions. 





1.5.5 Integrating with Cubic Splines


In most cases, use of Simpson’s 1/3 rule, including the extension to unequal increments, will provide a relatively simple and accurate means of evaluating integrals numerically. If an odd number of points are encountered, adjustments can be made as indicated earlier. There would only rarely be reasons to choose other algorithms. On the other hand, if cubic splines are already being used for interpolation in a computer code, very little additional effort would be required to incorporate a procedure to integrate the cubic spline. 





1.6 Numerical Solution of Ordinary Differential Equations





1.6.1 General


Ordinary differential equations govern a great many important physical processes and phenomena. An equation of the form 


�EMBED Equation.3���					(1.93)


with�EMBED Equation.3��� given and with suitable initial conditions, say �EMBED Equation.3���, also given, can be integrated analytically or numerically by the methods discussed in the previous section, such as Simpson’s 1/3 rule. To do so, Eq. (1.93) is first written in the form


�EMBED Equation.3���				(1.94)


and if �EMBED Equation.3���cannot be integrated analytically a numerical procedure can be employed. 


The more general problem is nonlinear and of the form





�EMBED Equation.3���  f and �EMBED Equation.3���given 				(1.95)





The problem, of course, is to find �EMBED Equation.3��� for x (a. This is the standard problem addressed by conventional numerical methods for solving ordinary differential equations. Higher-order equations can  be transformed to a system of first-order equations by defining new variables. This is the procedure followed in the traditional numerical approach to solving ordinary differential equations. When dealing with an nth-order differential equation, n conditions must be specified in order to obtain a unique solution. If all conditions are specified at the same value of the independent variable (x = a, for example), then the problem is called and initial value problem. In many important physical problems, the conditions to be satisfied occur at different values of the independent variable, typically at the ends of the integration interval. This type of problem is frequently called a boundary-value problem. The most frequently used numerical techniques for solving ordinary differential equations have been formulated to handle initial value problems,  and these techniques have to be altered to deal with boundary-value problem. 





1.6.2 The Euler and Modified Euler Methods


The standard problem given by Eq. (1.95) is to solve





�EMBED Equation.3���  f and �EMBED Equation.3���given 		





Since �EMBED Equation.3���represents the slope of �EMBED Equation.3���and is known at x = a, �EMBED Equation.3���can be approximated as �EMBED Equation.3���. The Euler method, consists of using the slope determined from the given f at the left-hand side of the �EMBED Equation.3���interval to extrapolate linearly over �EMBED Equation.3���. The slope is then updated from f using the new values of x and y, and the process is repeated over a new �EMBED Equation.3���interval. This procedure is illustrated in Fig. 1.9. The  algorithm for the Euler method can be generalized as 





�EMBED Equation.3���				(1.96)


or, recognizing that �EMBED Equation.3���is in fact �EMBED Equation.3���from the differential equation, the algorithm can be written as


�EMBED Equation.3���					(1.97)


The truncation error associated with the Euler method can be easily determined by recognizing Eq. (1.97) as the first two terms of a Taylor series expansion for �EMBED Equation.3��� about �EMBED Equation.3���. 





	In the Euler method, the extrapolation over�EMBED Equation.3���was based on the slope at the beginning of the interval. Unless �EMBED Equation.3���is a straight line, this will always be in error. It would seem better to use an average slope over the interval. Unfortunately, the slope at the end of the interval is not generally known, because it depends on �EMBED Equation.3���, the solution itself. One way to proceed is to use the Euler method to predict the value of y at the end of the interval so that the slope can be evaluated at least approximately at the end of the interval. This slope can be averaged with the value available for the beginning of the interval, and then a corrected value of y can be obtained for the end of the interval. This procedure can be repeated until the change in y at the end of the interval is no longer significant. Such a procedure is known as the modified Euler method, the Euler predictor-corrector method, or Heun’s method. The algorithm for the modified Euler method consists of a predictor step that employs the simple Euler algorithm and a corrector step that utilizes  the average of the slope at the beginning  and end of the �EMBED Equation.3���interval:


PREDICTOR 


�EMBED Equation.3���





CORRECTOR
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	The modified Euler method was seen to offer significant improvement in accuracy for a modest cost in computational effort 





1.6.3 Treatment of Higher Order Equations


The methods discussed for solving ordinary differential equations have been applied to first-order equations. Differential equations of order higher than the first can be solved by these procedures by first transforming the nth-order differential equation into a system of n first-order equations. This is the conventional strategy employed in numerically solving higher-order ordinary differential equations. 





1.6.4 The solution of Boundary-Value Problems


In many physical problems governed by second-order or higher-order ordinary differential equations, boundary conditions must be satisfied at more than one value of the independent variable. A typical example arises in solving for the temperature distribution along a thin fin of constant cross-sectional area. For the thin fin, the temperature is assumed to vary only with the coordinate measured along the fin. For the case where radiation dominates, 





�EMBED Equation.3���				


If �EMBED Equation.3��� ((  �EMBED Equation.3���, the equation can be simplified further to 


  


�EMBED Equation.3���					(1.111)


where �EMBED Equation.3��� is the cross-sectional area of the fin and P is the distance measured around (the perimeter of) the fin. The boundary conditions are 





�EMBED Equation.3���	  and    �EMBED Equation.3���				(1.112)


Although the boundary conditions for fin problems may vary13, one of them is invariably specified at x = L. The condition specified in the above example, �EMBED Equation.3���, corresponds to an adiabatic outer end. This is approximated in practice by fins for which the end heat loss is negligible.


	The literature on numerical methods for boundary-value problems is quite extensive. However, in many cases the same methodology described for initial-value problems can be employed in an iterative fashion to solve boundary-value problems. This strategy requires that a procedure be devised to find a boundary condition of the initial-value type that will yield a solution to the differential equation that satisfies the real boundary condition specified for the problem. 





1.6.5 Runge-Kutta Methods


the German mathematicians Runge and Kutta early in this century suggested a group  of methods for obtaining numerical solutions to ordinary differential equations based on the idea of using a weighted average of several estimates for the incremental change in y over an interval �EMBED Equation.3���. The  weighting is chosen to make the solution agree as well as possible with a Taylor series expansion. The Runge-Kutta strategy can be extended to match as many terms in the Taylor series as desired, and the Runge-Kutta methods are named second-order, third-order, etc., according to the highest order of the terms represented in the Taylor series expansion. The algebraic details in the derivation of the Runge-Kutta formulas become quite complex for orders higher than the second. The details in the derivation of the Runge-Kutta algorithms for orders up through the fourth can be found in Ref. 1.


	The fourth-order Runge-Kutta procedure is very widely used for the solution of ordinary differential equations. The algorithm for the solution of the standard first-order equation, Eq. (1.95) can be written as


�EMBED Equation.3���				(1.115)


where 		�EMBED Equation.3���


			�EMBED Equation.3���			


			�EMBED Equation.3���


			�EMBED Equation.3���


The quantities �EMBED Equation.3���are estimated increments in y over the �EMBED Equation.3���interval. The first increment, �EMBED Equation.3���, is the same as for the Euler method. The second and third increments are based on evaluations of the derivative function at the midpoint of the �EMBED Equation.3���interval. The final increment is based on an evaluation of f at the end of the �EMBED Equation.3���interval. If �EMBED Equation.3���does not depend on y, then the fourth-order Runge-Kutta formula is equivalent to  Simpson’s 1/3 rule for integration. 





	A minor difficulty with the conventional Runge-Kutta methods is that there is no convenient way to monitor accuracy. A common procedure is to reduce the step size by half and repeat the calculation. This recalculation procedure can become relatively costly in computer time. Several modifications to the Runge-Kutta procedure have been proposed that enable an estimate of to be determined with a minimum of additional effort. One of the most popular is the Runge-Kutta-Fehlberg method. In this scheme, both fourth-order and fifth-order calculations are made for �EMBED Equation.3���. The difference in the two results is taken as an estimate of the truncation error in the fourth-order method. This information can then be used to adjust the step size in order to maintain the desired accuracy. 





























	


























































































































